
IMMISCIBLE FLUID DISPLACEMENT IN NONLINEAR SEEPAGE FLOW 

M. G. Bernardiner and V. M. Entov 

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 2, pp. 110-114, 1968 

Abstract: The existing theory of immiscible fluid flow is extended to 
the seepage with nonzero initial shear stress of viseoplastic media. An 
analog of the Buckley-Leverett frontal-displacement theory is con- 
structed. 

1. In the theory of motion of multiphase fluids [1-3] it is assumed 
that each phase moves separately in accordance with Darcy's law: the 
seepage velocity of each phase is assumed to be proportional to the 
pressure gradient and the effective permeability depends on the 
distribution of pore volume between phases (saturation). Numerous 
investigations have shown that this sehematization is a fruitful one 
and allows for accurate description of the main features of the multi- 
phase flow processes. * 

Below, the existing theory is extended to the case for which one 
or both of the fluids do not obey Darcy's law. In itself, the non- 
iinearity may be associated either with the truly non-Newtonian be- 
havior of the fluid (e,g.. a number of natural oils [4, 5], emulsions 
[G], foams, etc. ) or with the particularly strong nonviseous iuteraction 
between the fluid and the rock (e.g., water in argillized sandstoue [5]). 
In all these cases, the nonliuearity is manifested in the region of 
tow seepage velocities. This is hnportant to note, since the basic 
problem of the theory of two-phase motion is the displacement problem 
describing the displacement of oii by water during the course of 
flooding. In this case, the low-velocity region is most important, since 
it covers most of the bed. The discussion that follows is based onEfros' 
thorough analysis of the processes associated with displacement and 
two-phase flow [8]. 

The simplest model of a fluid for which the flow law is nonliuear 
in the low-velocity region is the model of a viscoplastie medium, 
ht particular, the Bingham-Schwedoff model used below. In this case, 
the relation between the stresses r and the shear rate du/dn has the 
fornl 

"~ = - -  % - -  ~tdu / dn (du / dn > O), 

]'v] ~ % ( d u / d n  = 0),  ( 1 . 1 )  

where T o iS the critical value of the shear stress and # is viscosity. 
2. Nonlinear flow of two-phase systems. First of all, we will show 

that the theory of multiphase flow remains essentially valid for non- 
Newtonian media. The nucleus of the theory is the assumption that, 
at any point in the flow region, the phase distribution in the pore space 
is determhmd by capillary forces and does not depend on the hydro- 
dynamic forces associated with motion of the fluid (regarding the 
limits of applicablitiy of this assumption see, for example. [3.8]). 

in this case, the process of occupation of the pore space is assumed 
to be unidirectional (e. g . ,  the gradual replacement of oil by water), 
the fluid with the greater wetting properties tending to occupy the 
smaller pores. At first glance, if the fluid is viscoplastic and has 
a nonzero initial shear stress r i (the subscript denotes the phase number). 

the phase distribution will change; a plastic fluid wilI not be able to 
penetrate into tile narrowest pore channels, just as displacement from 
such pores wiI1 be difficult. It is easy to see, however, that this is not 
80 .  

Let a fluid with critical shear stress r 2 be displaced from a porous 
medium, Here r 2 is the true critical shear stress; i. e . ,  at stresses 
less than r z , there is no motion of the fluid at all. The displacing 
fluid has a shear stress r 1. We denote the surface tension at the phase 
interface by o; at the interface there exists a certain capillary 
pressure jump Pc = ] Pl-Pz !, where Pl < Pz if o> 0, and the fluid 
with the greater wetting power displaces the less-wetting one. Other 
things being equal, Pc is determined by the mean radius of curvature 
of the phase interface and hence [J.-3] depends on the saturation s, 
Pc = pc(S). 

We assmne that the volume initially occupied by tile second fluid 
is subsequently partially filled (to saturation s) bythe first fluid, which, 
to be specific, is assumed to have the greater wetting power. We will 
consider the nature of the distribution of both phases over the pores. 
First of all, it is clear that the stresses r i mnst be very small, since, 
otherwise, under actual conditions, there can be no question of any 
displacement of fluid. In fact, if we denote the characteristic value 
of the externally applied pressure head by Ap, the corresponding 
distance (macroscale) by L, and the characteristic dimension of the 
pores (internal scale) by d,-~ obviously 

a A p / L > ~ : i / d  ( [ =  i,2), 

where the coefficient co is on the order of unity. As usual, we will 
consider only elements of the porous medium which are large compared 

with the inside dimension d. if the characteristic dimension of such a 
macrovolume element is D, the corresponding pressure drop is of the 
order of ApD/L. If it is assumed that the phase distribution differs 
siguifieautIy from that corresponding to IocaI capillary equilibrium, 
a capillary pressure jump equal in order of magnitude to e / d  will bring 
the phases into equilibrium. If d is sufficiently small,  

D ~ L  / (apd) ;  (2.2) 

~he equilibrium phase distribution will be established so quickly that if7 
solving hydrodynamic problems it may be assumed to be an equilibrium 
distribution all the time. In view of the condition that d << D, it is 
uecessary that 

d ~ < aL / A p  < a o d  / T~ (2.3) 

(the latter in view of (2.1)), which is usually satisfied in oft fietd work. 
Consequently, with the same conditions 

�9 i ~ o / d (2.4) 

and it is also possible to neglect the effect of the non-Newtonian 
properties of the fluid on phase redistribution, In other words, the 

'~ In itself, this assumption, whether explicit or implicit, is as- 
sociated with the fact that, in any volume element, the pressure created 
by capillary forces on departure from equilibrium considerably exceed 
the pressure drop due to hydrodynamic forces. Thus, the hydrodynamic 
forces are capable of evoking only a slight change in the phase distribution 
within the pore space on the scale of the iudividuaI element. On the 
other hand, in terms of the whole bed, the direct effect of the pressure 
drop created by capillary forces is negligible. 

If for some reason, the phase distribution in the porous medium is a 

non-equilibrium distribution, tile departure from equilibrium will be 
smoothed out differentIy depending on the space scale. Distrubances ill 
the volume element are smoothed out by capillary forces. Disturbances 
involving the entire bed smoothed out by displacement of the bed by 
the hydrodynamic head (the fluid velocities at any point depend on the 
local saturation, which may ready be assumed to be in equilibrium: pre- 
cisely this case is considered below). Fin_ally, there is au intermediate 
scale on which the effects of capillary and hydrodynamic forces must be 
jointly taken into account. 

J" The quantity Ck/m, where k is the permeability and m the 
porosity of the medium, is often taken as the internal scale. Then, for 
media of the same type d = C 4nx/m and the proportiouaIity factor C 
may be the order of several tens. 
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phases are distributed iJl accordance with the conditions of capillary 
equilibrium, just as if there were no resistance forces at all; at any 
moment each of the phases moves in its own volume of the pore space, 

just as if that volume were the pore space of some homogeneous medium 

and the other phase were completely absent. 

As the satt~ration changes, the properties of these fictitious" porous 
medium with the first, wetting phase. Assuming that, initially, the 

wetting phase preferentially fills the smaller pores, we arrive at the 
conehtsion that, qualitatively, the di(s) curve takes the form shown in 
Fig. 1, where d denotes the pore size averaged over the entire pore 
vohnne. From the condition of independent phase motion it follows 
that the seepage vdocity of a given phase is determined by its 
properties, by the pressure gradient, and by the geometry of the 
volume it occupies, but not by the porperties of the other phase, The 
properties of a viscoplastic medim-n are characterized by the viscosity 
g and the initial shear stress r i ,  and the geometry of the occupied 
vohnne by the characteristic pore size di(s ), so that 

d~e (s) 
u i =  1*~ gradp] ( ~  "r~ I g~d p I )" (2, 5) 

Assuming that the function f* can be expanded, we obtain: 

tq = -- C d(-' (t "~i 
"i grad p 1 -- -- Bd-Tlg~d p ). (2.6) 

This analysis presupposes that the phase in question continuously 
fills the space it occupies, i . e . ,  the phase is connected. The 
connectivity condition is satisfied when the porous medium with the 
given phase is highly saturated, but when the satttration falls, the 
fraction corresponding to isolated droplets gradually increases until 

finally, at a certain saturation, the entire phase is divided into 
individual droplets and motion ceases. On the phase-permeability 
curves this corresponds to the vanishing of the corresponding phase 
permeabilities, 

With this in mind, we rewrite (2.6) in the form 

k i(s) grad p (t --  B ~i 
ui ~i ~ ~ [g rad  p l ]  

lq (s) =_ k h  (s) ..< Cdi~ (s). (2.7) 

Here, in view of the conclusions of section 1, the phase perme- 
abilities ki(s ) depend on the saturation s in the same way as the phase 
permeabilities for ordinary Newtonian fluids. 

It is more convenient to rewrite (2.7) in the form 

k grad p '~ 
u~ = - -  ~ - i / i  (s) (grad p -- "r i [grad p 1)" (2.8) 

Here it is assumed that when ] u i ] > 0 the first term is greater in 
absolute value than the second; otherwise u i = 0. Relation (2.8) 
ex presses the extension to two-phase flow of the law of seepage, with an 
initial gradient used to describe the seepage of viscoplastic fluids in 
[9,10] and the motion of water through argillized porous media in 
[11]. In this case, the limiting gradients Yi = Bri / d  i of the cor- 
responding phases are functions of saturation. 

Relations (2.7) and (2.8) represent the required extension of the 
basic relations of two-phase flow to the motion of viscoplastic fluids. 
In this case, it is also necesary to determine the dimensionless 
constant B and the fnncton di(s). Like the relations of two-phase flow 
theory for viscous flutds, expression (2.8) cease to apply in regions where 

the saturation experiences sharp changes, 

i' 

Fig. i 

Such regions correspond to the displacement front; near the dis- 
placement front, the capillary and hydrodyuamic forces are comparable 
in magnitude, inequality (2.2) is violated, and it is no longer possible 
to assume that the phases will move without interacting. In the region 
of the front, the very concept of phase permeabilities becomes 
questionable (this has been noted by G. I. Barenblatt), since the nature 
of phase motion is still unclear. In what follows, region of sharp change 
of saturation will be excluded from consideration. 

3. Frontal displacement of non-Newtonian fluids. Buekiey-Leverett 

theory. We will consider the simple problem of one-dimensional 
frontal displacement of non-Newtonian fluids in the Buckley-Leverett 
formulation [1-3], Assuming that both fluids are incompressible, we 
have 

ui § us = u (t) (3.1) 

where u (t) is a known function of time. We neglect the pressure 
difference between the fluids and set 

P i  = P2 = P ( x ,  t )  . ( 3 . 2 )  

From (2.8), written for each of the phase, we have 

ul~h 4- Bk]l (s) vl / dl ~ Ue,24- Bk/e (s) "re / de Op 
k]l (s) k h (s) = - -  -57" 

On the other hand, adding Eqs. (2.8), we obtain (assuming that 
u> O, 0p/Ox < 0) 

/ / =  gl -~ u2 = 

= __ ( ~  -~- k./2 (3) t ~  t2 ] Opox kfl (s) '~l~tl k/'2 ('g) ~2.2 

Forming the expression for ~p /~x  and substituting into the 
previous relations, we obtain 

h (s) h (s) 1= (s) 
ul = u/1 (s) + ~]~ (s) § ~ [11 (s) -t- ,J:~. (s)] ('r~ -- Y1); 

I xl (3.3) 
~-- ~e 

and the analogous relation for u 2 (obtained by interchanging sub- 
scripts). Expression (3.3) is an analog of the usual Buckley- 
Leverett relation, and the coefficient of u on the right-hand 
side is the Buckley-Leverett function. Expression (3.3) ceases to 
be valid if its right-hand side becomes negative; in this case, 
it is necessary to set u 1 = 0, However, if it exceeds u, it is 
necessary to set u 1 = u. This remark also appIies to u 2. We 
rewrite (3.3) in the form 

u 1 = uF (s, ~, u) (3.4) 

and substitute it into the continuity equation 

Os Oul 
m ~ / -  + _ 8 7 = 0 .  (3.5) 

In this case, for the saturation s, we obtain the usual equation 
of the Buckley-Leverett theory; the properties of its solutions are 
determined by the form of the function F. 

Considering the physical significance of the parameters that have 
been introduced, we see that with fairly natural assmnptions the 
function F remains monotonic with respect to the saturation s. In fact, 
it is easy to obtain the relation 

u t4 -kh ' r l /~ l  _ h 
u - - u 1 ~ k / ~ T e / ] ~ .  ,]2 (3.6) 

which we can represent in the form 

u ~ l  (khy..)-I 4- T~/7~. - -  t. 
(u - -  ux) B.. (kl.:>.) -~ -t-  1 ( 3 . 7 )  

We assume that the ratio d2/d 1 decreases with increase in s, which 
is consistent with the form of the curves in Fig. 1. Moreover, fl must 

Generally speaking, the saturation s should also be included as an in- 
dependent argument of the function f .  Accordingly, the quantity B in 
(2. 6) is found to depend on s. 
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increase with s more rapidly than d i and hence more rapidly than d 2. 
Then, for fixed u and u 1 the expression on the left-hand side of (8.7) 
decreases with an increase in s and, at fixed s, increases with an in- 
crease in u~. Thus, we find that u 1 increases with an increase in s. 

At the same time, in the general case, it is impossible to assert 
that the curve F (s) has only one point of inflection, as in the case of 
Newtonian fluids. In this respect the flow of viseoplastic fluids is sim- 
ilar to the displacement in the mass force field examined by Buzinov 
and Charnyi [12] (see also [2]). 

The appearance of an additional term in the expressibn for u, 
(Eq. (3.8)) may lead to an important change in the nature of the 
displacement. Let us start by assuming that the differeneeyl-y z is 
positive. Then, at sufficiently small velocities u, expression (8.3) 
becomes negative for all saturations s between s* and some value of 
s 0. Accordingly, the function F will have the form of curve 2 in Fig. 2 
(curve 1 corresponds to r ~ = r 2  = 0). 

The quantity s o is the mm~mum saturation value for the displacing 
phase. As the difference y j -  y~ increases, and the displacement 
velocity u decreases, this quantity increases to a certain limiting 
value s*, which represents the maximum possible value of saturation 
for the displacing phase. In other words, in the case of slow displace- 

ment by a fluid having a sufficiently large initial shear stress, the 
displacement tends to the piston case with maxium completeness of 
displacement. This determines the possibilities of displacement with 
viscoplastic fluids. (This is fully consistent with the actual intensification 
of displacement by means of foams for which a nonzero initial shear 
stress is observed.) 

As may easily be seen from the above relations, in our case t h e  
increased efficiency of displacement is associated with the fact that at 

low velocities the ratio of the pressure gradients in the displacing and 
displaced fluids becomes infinitely large. In principle, the same effect 
can be obtained by increasing the viscosity of the displacing fluid in 
the ordinary Buckley-Leverett theory. 

However, it is important that as the viscosity increases the pressure 
losses near injection wells increase substantially, whereas the existence 
of a limiting gradient adds only slightly to the locai pressure losses 
near the wells. 

On the other hand, when the opposite relation Yl < Ya is satisfied 
at sufficiently small u, the F(s) curve has the form of curve 8 in Fig. 
2; the displacement efficiency falls the more sharply, the smaller the 
velocity u. 

Note added in proof. A recent experimental study [la] gives data 
on the dependence of the phase permeabilities on critical shear stress 
(for displacement of a model viscoplastic fluid bv a ~as). We note two 

points that may account for the disagreement between the conclusions 
reached above and these experimental data. First of all, it was 

assumed above that y is on the order of the mean pressure gradient in 
the bed: y ~  10 -1 a t / m =  10 a dyne/cm s. For amean  pore sided 

10-2_10- s cm this corresponds to an initial shear stress r ~ 1-10 

dyne/cm 2, which is muchless than the shear stress for the fluids used 
in the experiment. Secondly, it should be borne in mind that the 
relative phase permeabilities introduced above no longer represent 
the ratio of the fluid flow rate in two-phase flow to the flow rate in 
single-phase flow with the same pressure gradient. In the experiment, 
however, they were apparently determined in precisely this way. 
Finally, we note that since a viscoplastie fluid is more wetting than 
a gas, in Fig. 1, curve i should be assigned to the fluid. 

The authors are grateful to G. I. Barenblatt and V. M. Ryzhik for 
frequent stimulating discussions of their work. 
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